Potential Diffusion of Expert Systems in Forecasting
نویسندگان
چکیده
We drew upon findings from the diffusion literature to assess the prospects for the diffusion of expert systems in forecasting. Forecasters judged potential adoption of expert systems in relation to two techniques that had been widely adopted in the past, Box-Jenkins and scenarios. They also rated each technique on seven innovation characteristics: relative advantage, compatibility, divisibility, communicability, complexity, product risks, and psychological risks. The respondents were classified by four forecaster roles: researcher, educator, practitioner, and decision maker. In general, the expected probabilities of adoption for expert systems were slightly higher than for the two other techniques. Additionally, the respondents rated expert systems nearly equivalent to Box-Jenkins and scenarios on relative advantage and communicability. In relating the probabilities of adoption to the characteristic ratings, the groups perceived significant negative psychological and product risks with expert systems. However the experts, especially practitioners and decision makers, rated expert systems positive on compatibility, divisibility, and communicability, so it may be desirable to ensure that these positive traits are stressed with potential adopters, especially researchers and educators. © 2001 Elsevier Science Inc Disciplines Business | Marketing Comments Suggested Citation: Armstrong, J.S. and Yokum, J.T. (2001). Potential Diffusion of Expert Systems in Forecasting. Technological Forecasting and Social Change. Vol. 67(1). p. 93-103. The published version of this article is available at http://www.sciencedirect.com/science/article/pii/ S0040162599000955 This journal article is available at ScholarlyCommons: http://repository.upenn.edu/marketing_papers/144 Published in Technological Forecasting and Social Change, 67, 2001, 93-103. Potential Diffusion of Expert Systems in Forecasting J. Scott Armstrong The Wharton School, University of Pennsylvania Thomas Yokum Angelo State University
منابع مشابه
Novel Hybrid Fuzzy-Evolutionary Algorithms for Optimization of a Fuzzy Expert System Applied to Dust Phenomenon Forecasting Problem
Nowadays, dust phenomenon is one of the important challenges in warm and dry areas. Forecasting the phenomenon before its occurrence helps to take precautionary steps to prevent its consequences. Fuzzy expert systems capabilities have been taken into account to assist and cope with the uncertainty associated to complex environments such as dust forecasting problem. This paper presents novel hyb...
متن کاملNovel Hybrid Fuzzy-Evolutionary Algorithms for Optimization of a Fuzzy Expert System Applied to Dust Phenomenon Forecasting Problem
Nowadays, dust phenomenon is one of the important challenges in warm and dry areas. Forecasting the phenomenon before its occurrence helps to take precautionary steps to prevent its consequences. Fuzzy expert systems capabilities have been taken into account to assist and cope with the uncertainty associated to complex environments such as dust forecasting problem. This paper presents novel hyb...
متن کاملDifferent Methods of Long-Term Electric Load Demand Forecasting a Comprehensive Review
Long-term demand forecasting presents the first step in planning and developing future generation, transmission and distribution facilities. One of the primary tasks of an electric utility accurately predicts load demand requirements at all times, especially for long-term. Based on the outcome of such forecasts, utilities coordinate their resources to meet the forecasted demand using a least-co...
متن کاملImplementing support vector regression with differential evolution to forecast motherboard shipments
In this study, we investigate the forecasting accuracy of motherboard shipments from Taiwan manufacturers. A generalized Bass diffusion model with external variables can provide better forecasting performance. We present a hybrid particle swarm optimization (HPSO) algorithm to improve the parameter estimates of the generalized Bass diffusion model. A support vector regression (SVR) model was re...
متن کاملA Neural-Network Approach to the Modeling of the Impact of Market Volatility on Investment
In recent years, authors have focused on modeling and forecasting volatility in financial series it is crucial for the characterization of markets, portfolio optimization and asset valuation. One of the most used methods to forecast market volatility is the linear regression. Nonetheless, the errors in prediction using this approach are often quite high. Hence, continued research is conducted t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014